Mahout 0.2 released

Mahout 0.2 released #

Apache Mahout 0.2 has been released and is now available for public download at http://www.apache.org/dyn/closer.cgi/lucene/mahout

Up to date maven artifacts can be found in the Apache repository at
https://repository.apache.org/cont ent/repositories/releases/org/apache/mahout/


Apache Mahout is a subproject of Apache Lucene with the goal of delivering scalable machine learning algorithm implementations under the Apache license. http://www.apache.org/licenses/LICENSE-2.0

Mahout is a machine learning library meant to scale: Scale in terms of community to support anyone interested in using machine learning. Scale in terms of business by providing the library under a commercially friendly, free software license. Scale in terms of computation to the size of data we manage today.

Built on top of the powerful map/reduce paradigm of the Apache Hadoop project, Mahout lets you solve popular machine learning problem settings like clustering, collaborative filtering and classification
over Terabytes of data over thousands of computers.

Implemented with scalability in mind the latest release brings many performance optimizations so that even in a single node setup the library performs well.

The complete changelist can be found here:

http://issues.apache.org/jira/browse/MAHOUT/fi xforversion/12313278

New Mahout 0.2 features include


  • Major performance enhancements in Collaborative Filtering, Classification and Clustering
  • New: Latent Dirichlet Allocation(LDA) implementation for topic modelling
  • New: Frequent Itemset Mining for mining top-k patterns from a list of transactions
  • New: Decision Forests implementation for Decision Tree classification (In Memory & Partial Data)
  • New: HBase storage support for Naive Bayes model building and classification
  • New: Generation of vectors from Text documents for use with Mahout Algorithms
  • Performance improvements in various Vector implementations
  • Tons of bug fixes and code cleanup


Getting started: New to Mahout?



F or more information on Apache Mahout, see http://lucene.apache.org/mahout

A very BIG Thank You to all those who made this release happen!